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1.0 Introduction

One of the most important figures of merit for a synchrotron radiation source, once speci-
fied beam intensity and energy have been achieved, is charged particle beam stability. Whileasig-
nificant effort has been expended at the Advanced Photon Source (APS) to reduce or eliminate
undesirable sources of beam motion, it will be necessary to employ active feedback to stabilize
the user photon beams to the very stringent levels required. This becomes especially important
when one considers that transverse beam stability is generally quoted as a fraction of beam
dimensions. Since source brightness tends to be inversely proportional to these transverse dimen-
sions, it should be evident that x-ray beamline usersin general will support any and all efforts to
reduce the transverse charged particle beam dimensions. The obvious corollary to thisisthat coin-
cident with emittance reduction efforts must come improvements in our ability to both measure
and correct the particle beam trajectory.

Presently, there are at least two active proposals at the APS for reducing both horizontal
and vertical emittance. A simple change in lattice functions gives afactor of two reduction in hor-
izontal and vertical beam emittance, while a machine studies program focusing on the correction
of horizontal-vertical coupling will allow a reduction of vertical emittance by a factor of 100 or
more.

The Advanced Photon Source presently operates with the design natural emittance of 8.2
nm-rad, and without coupling correction, the vertical emittance is approximately 3% of thisvalue.
The APS design value for coupling is 10%. Given the design lattice functions, the effect of hori-
zontal-vertical coupling on insertion device source beam size is shown in Table 1.

Table1. Effect of coupling variation on insertion device source size. The natural emittance
assumed is 8.2 nm-rad.

Coupling 10% 3% 1% 0.3% 0.1%
Horizontal rms beam size o, (1m) 325 336 340 341 341
Vertical rms beam size oy, (um) 86 49 28 15.7 9.1




Presently, the most stringent requirement on rf beam position monitors (RFBPMS) is
derivable from the vertical orbit stability specification, namely, that the vertical charged particle
beam trgjectory must be stable to within 5% of the rms vertical beam size.

At the time the APS beam position monitor system was designed, it was not known that
such a specification was even achievable, and even with completely noise-free electronics, other
sources of apparent beam motion come into play (e.g., thermo-mechanical effects impacting both
the accelerator and the beamlines).

Fortunately, due to a careful and extensive design specification process, the presently
installed RFBPM system has been demonstrated to have an AC sensitivity that can resolve verti-
cal orbit motions much smaller than 5% of the “design” vertical beam size, i.e., assuming 10%
coupling [1]. The reason for qualifying the above statement as applying only to AC beam motions
should be clear to those familiar with the theory of low frequency electronic noise. Long-term
drift of electronic circuit characteristics is a very difficult problem. Ultimately, what the x-ray user
Is concerned about is the uniformity of x-ray flux striking the sample under study; this is the ulti-

mate aim of our orbit correction and feedback efforts.

2.0 Noise Fundamentals

In all of the preceding discussion, emphasis has been placed on measurable quantities hav-
ing the dimensions of length, namely beam size and orbit motions. References to temporal struc-
ture have been qualitative, making use of language such as “AC position sensitivity,” and “long-
term drift.” We need to do a bit better than that if we are to understand what properties of the BPM
system are critical for real-time orbit correction with the objective of reducing or eliminating
unwanted noise in the beam position.

As an example, Figure 1 shows the ground motion that occurred in APS storage ring sec-
tor 19 when a forklift drove into the storage ring infield through the vehicle access tunnel and
passed directly underneath the storage ring where a ground motion transducer (a seismometer)
was located. There are several things about this data that are brutally obvious to the most casual of
observers, but, when we attempt to write down something quantitative, it becomes clear that much

care is needed in order to include all of the essential subtleties
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Figurel. Time seriesground motion data collected for the experiment hall floor, sector 19.

For one thing, it is apparent that the forklift spent about 20 out of the 64-second time sam-
ple actually traversing the tunnel. During the time it was in the tunnel, a strong and fast vibration
occurred. In addition to this, an even longer, ower motion is observed, with about a 1 micron
peak-to-peak amplitude, and with a period of about 7 seconds. Thislonger period motioninfact is
not periodic at al, with changes in both amplitude and phase clearly observable in the time sam-
ple shown. Finally, and this usually goes without saying but is extremely important in our analy-
Sis, the data shown in Figure 1 isincomplete. In fact, it isinfinitely incomplete. We have no idea
what happened before timet = O or after time t = 64 seconds. For all we know, the ground may
have been dead quiet at al other times and it is only due to some cosmic conspiracy that the data
shows the displayed form. Antithetically, at t = 65 seconds, it may have been that a magnitude 9
earthquake occurred. There is simply no way from looking at the data to disprove either conjec-
ture.

Common sense tells us, however, that the slow, 7-second period motion probably was
present beforetime t = 0 and after t = 64 seconds, and that it probably had about the same average
amplitude that it did while we were looking, namely a peak-to-peak amplitude of 1 micron. On



the other hand, it isa good bet that the fast ground motion (actually, pretty closeto 3 Hz) probably
was not present prior to time t = 0 and probably will occur one more time for about 20 seconds
duration sometime after time t = 64 seconds, unless the forklift driver plans to take alunch break
parked somewhere within the storage ring infield. Incidentally, geophysicists are quite familiar
with our observed 7-second period motion, which is generally detectable everywhere on earth. It
iIsalmost certainly associated with ocean waves lapping languidly up on beaches, up and down the
continental coast lines.

In addition to the long time scale information, it should also be apparent that very rapid
motions occurring faster than the sampling rate are not represented accurately in the data of Fig-
ure 1. Here we have 2048 numbers, measured once every 31.25 millisecondsfor atotal time of 64
seconds. Clearly, events occurring faster than this, i.e., at high frequency, are not accurately char-
acterized. What exactly is meant by high frequency will soon be made clear.

How then are we to cast the remarks made in the preceding paragraphs into a quantitative
framework for the purpose of characterizing our success in achieving the goal of orbit stability?
This was alluded to via remarks such as “1 micron peak-to-peak,” “period of about 7 seconds,”
and “pretty close to 3 Hz.” In other words, definitions used to answer the questions “How big is
it?” and “How fast is it?” are needed.

With regard to a quantitative measure of signal amplitude, one standard measure is that of

mean-square amplitude, defined as:
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wherex,, represents the sequenceNohumbers, for example those plotted in Figure 1. The rms
amplitude is just the square root v gn , by definition. Implicit in the definition of Eq. (1) might
be the assumption that our data is truly AC in nature, specifically, that it has no DC component
(please excuse the EE vernacular).

Quantitatively, we are saying that:
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While for many very large data sets this might be a very good approximation, it's not good
enough in the context of micron-scale beam position measurement work. The qudmntity , Some-
times writtenx, is called the mean value of the signal for a particular data set, in this case the
mean displacement. In order to accommodate correctly data having a non-zero meakvalue , it
IS necessary to first introduce a baseline offset in the data prior to performing the sum indicated in

Eq. (1). In this way, one arrives at the standard deviatjdor a data set, defined according to:
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The meanX] and standard deviatmnfor a data sefx,} are extremely important sta-
tistical properties characterizing a data set. It is evident, however, that a large amount of informa-
tion has been discarded in performing the sums indicated in the definitionix{or oy.and
Instead of thé\ values contained in the data §&f} , we have boiled them down to the two num-
bers XU ando,. We have gone some distance in answering the question “How big is it?” at the
expense of throwing away any information that could be used to answer the second question,
“How fast is it?” To address this second question, we must introduce the concepts of Fourier

transforms and power spectral densities [2].

3.0 AnalogFourier Transformsand Power Spectral Density

Making use of the conventions used in Ref. 2, we define the following Fourier transform

pair:

X(f) = fom x(t)e? ™t @

x(t) = f X(f)e 2™y (5)



Of particular interest here is an object referred to in Ref. 2 as ‘total power,” with represen-

tations in both time and frequency domains:
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which is a statement of what is commonly known as Parseval’'s theorem. The resemblance
between Eq. (6) and Eq. (1) is the basis for defining a quantity known as the power spectral den-
sity (PSD), which is to be interpreted as the quantity of mean-squared signal amplitude contained
within a frequency range frofo f + df. When integrated over all frequencies, the PSD yields the
integrated mean-square signal amplitude. The motivation behind using the term ‘power’ comes
from electrical signal spectrum analysis, where the power is proportional to the square of voltage.
In the present context of ground or beam motion measurements, the PSD has dimensions of
(length¥ per unit frequency.

For an analog, real function of timxét) , itis the convention in Ref. 2 to take advantage of
the symmetry properties of the Fourier transform and make use of only positive frequencies in the

definition of the power spectral densiBy,(f)

P (F) = IX(HI? +IX(-HI? = 2X(f)% 0sf<o 7)
such that
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4.0 DiscreteFourier Transforms

If instead of the continuous functia(t), we have in our possession only samples of it at

regularly spaced intervalA:

X, = X(t), t,=ndA n=0123, ... N1 9)

we can in a completely analogous manner to Eqgs. (4) and (5) define a discrete Fourier transform

pair (departing slightly from the convention of Ref. 2):
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The correspondence between analog and discrete formulations can be approximated as

k
X(f) = XEN—AE: NAX, . (12)

The discrete form of Parseval’s theorem becomes:
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i.e., the sum of the squares of tgyields the mean-square value of the sampled datgxsgt

Given the symmetry properties X for x, real, namely thaX | = X ., andX = X |, it is cus-
tomary to display the sequenggX,|} for positivanly, extending fronk= 0tok = N/ 2, cor-

responding to frequencies extending fromp tof, =1/2 A, also known as the Nyquist critical

frequency.

At this point, to the great misfortune of anyone actually trying to accomplish anything
guantitative, the number of methods for displaying discretely sampled data in the frequency
domain is vast, and a majority of the literature explaining the conventions, for example the users
manual for a spectrum analyzer, tend to be vague and relatively impenetrable. While we were able
with some confidence to write down the definitions represented by Egs. (7) and (8), these formu-
lae in practice are never used except in an abstract manner by theoreticians. Virtually all data
these days is collected and analyzed in the form of discrete samples. We are essentially guaran-
teed that a geophysicist, an accelerator physicist, and an rf engineer all mean something different
when they refer to a graph showing “the spectrum” corresponding to a specific data set.

We can be fairly confident, however, that at leastkfenequal to zero di/2, when a

physicist or engineer shows a plot of amplitude vs. frequency, they will be showing a graph of



something proportional to either the sequence of numbexs } , or the 'power’ spectrum
{\Xk\z}. Once a normalization is found such that the rms value described in Eq. (13) comes out
right, we are assured of being able to answer noise/bandwidth questions quantitatively.

Inspection of the definition in Eq. (10) settikg O tells us immediately why the cake
0 is generally handled separatels is nothing other than the mean value of the datd st

defined in Eq. (2). Removing the= 0 term from the right-hand sum in Eq. (13) yields an alter-
nate formula for the standard deviation of Eq. (3):

o’ = % T (- )% = KO- xF = S X%, (14)
n=0 k=1
as can be easily verified from the definitions in Egs. (1), (2), (3), together with Parseval's theorem
written as in Eq. (13).
One additional statement that all will agree on is that sample nuodfethe sequence

{X,} corresponds to a frequency:

k=01 ...= , (15)

N
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whereN is the total number of samples collected in the time seried)amdhe time in seconds
between samples, assuming a uniform sampling rate.

As a specific example of the application of the formulae presented in the preceding sec-
tions, Figure 2 shows FFT data computed directly from the data of Figure 1, using the routine
sddsfft authored by M. Borland [3]. While 20d8ta pointgn = 0 throughn = N = 2047) are dis-
played in Figure 1, there are only 1025 data po%sL 15 shown in Figure 2. Roughly half of
the information has been lost, because only the magnitude of the complex nXpaersdis-
played. Phase information is not shown. kie0 element/X,| indeed turns out to be exactly the
mean value of the data s&t] , 0.125 mm in this case. The normalizatiork&0ttata in Fig-
ure 2 is set such that the sum of squares fkom1l Kk to%l = 1024 (i.e., not including the

DC offset) gives the standard deviation according to Eq. (BDparently, forl <k < g , What

* |tactualy givesavalue for ze equal to N/(N-1) times Eq. (12), which isa very minor effect, relevant only
for statistics of small data sets.



has been displayed in Figure 2, is the quantity

X2+ X007 = V2)% (10

For k = %I , the value shown issimply Xy, and not./2 times this value, as for the other

k values; a consequence of avoiding the double-counting of the k = N/2 term when evaluating the
sumin Eq. (13). We are now in aposition, finally, to quantitatively answer the question posed ear-

lier, namely, for the data set of Figure 1, or for any set of time series data, “How fast is it already?”
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Figure2. FFT of the data from Fig. 1 using program sddsfft.

The sum of the squares of the values shown in Figure 2, over a spamaloés (corre-
sponding to a span of frequency values according to Eg. (15)), yields a number that can be inter-
preted as being the mean square amount of signal noise contained within that frequency span.
Thus, when an rf engineer, for example, refers to the “noise power in a 10 MHz frequency band,”
what he is referring to, whether he knows it or not, is the partial skadfies in Eq. (13) corre-
sponding to the frequency range of interest. He’ll probably take the log of the answer he gets,
expressed relative to 1 mW of power dissipated in a 50-Ohm load, and quote the value in dBm. So
long as the meaning behind Eq. (13) is remembered, there should never be a problem with physi-

cists and engineers communicating.



With regard to the information lost during the sampling process in Figure 1, we can say
that it lies either between frequency O and &f = N_lA (i.e., long-term drift), or above the Nyquist
frequency f, = i , Since there is no way to quantify changes occurring between time samples
spaced A apart. Long-term drift can be addressed by plotting the DC term X for successive (or
overlapping) data sets as a function of time. For the high frequency data, the only practical
approach, if thisinformation is of real interest, isto sample faster, making A smaller.

As one final illustrative example, Figure 3 shows the same data as for Figure 2, now
squared and plotted on alogarithmic scale. Thisformat is quite common on rf spectrum analyzers,
while low frequency (< 10’s of kHz) signal analyzers tend to display results as rms or peak ampli-
tude vs. frequency, or as power spectral densities, with built in *band power’ calculations involv-

ing cursors, etc.
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Figure3. The square of the data of Fig. 2, plotted on gjsgale.

One final comment about frequency domain data is that if one were to plot the square of

the data in Figure 2 as a function of frequency on a linear scale, the area under the ‘curve’ will be
equal to the total mean-square signal amplitude multiplied by the Nyquist frqulgncy . Thus,

unless you know what the sampling rate was for the time series data used to generate a plot of
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‘amplitude’ vs. frequency, the overall scale factor to get back quantitative rms or noise power val-
ues will be indeterminate. The best solution is if the FFT box you are using has built-in noise
power calculations; however, we are often in the situation of having a computer file of signal vs.
time or vs. frequency. It is hoped that the discussion in this section will aid in the analysis of sig-

nals which have a significant random (noise) component.
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